Lead-Contaminated Soils

Prepared for MTCA Science Advisory Board June 22, 2004

Outline

- · Overview.
 - Working Definition for Lead-Contaminated Soils
 - How Might Ecology Respond to the Board's Recommendations?
- Additional Information
 - Exposure Reduction Measures
 - Exposure to Lead-Contaminated Soils Incremental Impacts
- Review and Discuss SAB Responses to Ecology Questions
 - Upper End of the Moderate Range
 - Lower End of the Moderate Range
 - Soil Concentrations Below 250 mg/kg
 - · Protection of Adults and Older Children
 - Protection of Ground Water
 - Future Information Collection and Evaluation
- Next Steps

Overview

- The Areawide Soil Contamination Task Force recommended that Ecology use a tiered approach when responding to lead-contaminated soil problems.
- Ecology used the IEUBK model to establish a tiered approach for responding to lead-contaminated soils:
 - High Levels soils with potential to cause PbB > 15 ug/dL
 - Moderate Levels soils with potential to cause PbB between 10 and 15 ug/dL
 - Low Levels soils unlikely to cause PbB > 10 ug/dL
- Ecology requested that the Science Advisory Board review the scientific bases for Ecology's working definition for moderate levels of lead-contaminated soils.

2

Task Force Recommendation Tiered Response

Traditional Cleanup Processes and Measures (e.g. removal & containment) High Institutional Controls & Periodic Review 15 **Broad-Based Education and Awareness** Encourage and Support Early Implementation of Simple Containment Measures (Focus on Child Play Areas) Moderate Integrate More Permanent Containment Measures with New Construction/ Renovations **Periodic Program Review** 10 No Further Actions Low 2 dold

X Add

Moderate Levels of Lead Ecology Working Definition

	Lower End of Range	Upper End of Range
Residential Areas	250 mg/kg	500 mg/kg
Schools & Child Care Facilities	250 mg/kg	700 mg/kg
Commercial Facilities & Parks	250 mg/kg	1000 mg/kg

How Might Ecology Use the Board's Recommendations?

- Revise the Working Definition
- Provide Additional Guidance Materials
- Consider Board Recommendations When Revising the Rule
- Conduct Additional Studies to Address Data Gaps and Uncertainties

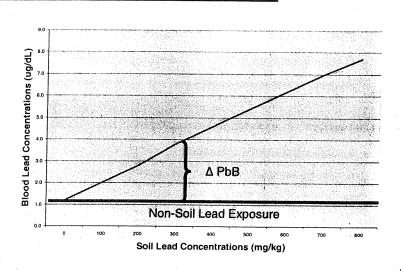
Additional Information Prepared To Support SAB Review

- Exposure Reduction Measures (Enclosure A)
 - Three Primary Soil Exposure Pathways
 - Three Categories of Intervention Measures
- Exposure to Lead-Contaminated Soils Incremental Impacts on Blood Lead Concentrations

•

Exposure Reduction Measures

- Estimated Lead Uptake for Soil-Related Pathways (Soil Concentration = 500 mg/kg)
 - Soil/Dust Ingestion
 - Garden Vegetables
 - Inhalation of Re-suspended Dust
- Estimated Potential Reduction in Lead Uptake Associated with Different Intervention Measures
 - Education Intervention Measures
 - Interim Measures
 - Cleanup Measures


8

Exposure Reduction Measures

- Estimated Lead Uptake for Soil-Related Pathways (Soil Concentration = 500 mg/kg)
 - Soil/Dust Ingestion (@ 50 60%)
 - Garden Vegetables (@ 30 40 %)
 - Non-soil Lead Exposure (@ 10%)
 - Inhalation of Re-suspended Dust (< 1 %)
- Estimated Potential Reduction in Lead Uptake Associated with Different Intervention Measures
 - Education Intervention Measures (0-50%)
 - Interim Measures (20 70%)
 - Cleanup Measures (50 100%)
- Qualifiers

9

10

Stern Lead Model

PbS = (ΔPbB_{brc})

(BKSF) (UF)

Where:

PbS = Concentration of Lead in Soils

 Δ PbB = Incremental PbB defined as de minimis,

acceptable or below regulatory concern

BKSF = Biokinetic slope factor relating lead uptake with

increases in child PbB

UF = Uptake factor relating soil concentrations with

lead uptake by children

Assumptions and Approach

- I IEUBK Model used to estimate PbB_{child} which represents a central tendency estimate (CTE).
- Soil-related changes in PbB_{child} are estimated by subtracting background PbB levels (soil concentration = 20 mg/kg) from CTE values.
- PbB_{child} corresponding to "reasonable maximum exposure"
 - Assume PbB levels are lognormally distributed
 - Assume CTE value = geometric mean
 - Assume GSD = 1.6
 - Estimate 90th, 95th and 99th percentile values

12

Estimated PbB Concentrations (Soil Concentration = 400 mg/kg)

Predicted Blood Lead Concentrations (Age Interval 12- 36 months)

13

Preliminary Draft (Discussion Only) Estimates of Soil-Related Impacts on Child Blood Lead Concentrations

Called	1	Soil-Related	Est. Soil-Related	Est. Soil-Related	Est. Soil-Related
Soil Lead Concentration PbB (CTE)	PbB (CTE)	Change in	Change in PbB	Change in PbB	Change in PbB
		PbB (CTE)	(90th percentile)	(95th percentile)	(99th percentile)
		0-84 N	Ionth Age Interval		
20	1.2	0	0.0	0.0	0.0
100	2.0	8.0	1.5	1.7	2.4
200	2.8	1.6	2.9	3.5	4.8
250	3.3	2.1	3.8	4.5	6.3
300	3.8	2.6	4.7	5.6	7.8
400	4.6	3.4	6.2	7.4	10.1
500	5.4	4.2	7.7	9.1	12.5
600	6.2	5	9.1	10.8	14.9
700	7.0	5.8	10.6	12.6	17.3
800	7.7	6.5	11.9	14.1	19.4
12-36 Month Age Interval					
20	1.3	0	0.0	0.0	0.0
100	2.4	1.1	2.0	2.4	3.3
200	3.6	2.3	4.2	5.0	6.9
250	4.0	2.7	4.9	5.8	. 8.1
300	4.7	3.4	6.2	7.4	10.1
400	5.8	4.5	8.2	9.7	13.4
500	6.9	5.6	10.2	12.1	16.7
600	7.9	6.6	12.1	14.3	19.7
700	8.8	7.5	13.7	16.2	22.4
800	9.7	8.4	15.3	18.2	25.1

Results

- Predicted PbB levels associated with soil exposure (column #3) are lower than predicted PbB levels based on total lead exposure (column #2).
- Predicted RME PbB levels associated with soil exposure (column #5) are @2-2-5 times higher than predicted CTE PbB (column #3).
- The preliminary results are consistent with Stern (1994) who recommended a PRG of 200 mg/kg (based on ΔPbB = 2 ug/dL).
- Predicted RME PbB (soil only) at a soil concentration of 200 mg/kg is 5 ug/dL (column #5 for 12-36 month age interval).

14

Summary

- Qualifiers Preliminary Analyses
- Other Possible Analyses
 - Other Exposure Scenarios
 - Use Δ IQ as Health Effect Measure
 - Probabilistic Estimates

Discussion Questions

- Upper End of "Moderate" Range
- Lower End of "Moderate" Range
- Soil Concentrations Below 250 mg/kg
- Protection of Adults and Older Children
- Protection of Ground Water
- Future Information Collection and Evaluation

1

Upper End of "Moderate" Range

- Question: Does the Science Advisory Board agree that the methods and assumptions used by Ecology to define the upper end of the moderate range are scientifically defensible?
- Rationale:
 - CDC Guidelines
 - Use of IEUBK Model
 - Reasonable exposure parameters and assumptions
 - Reasonable steps to reduce exposure

Lower End of "Moderate" Range

Question: Does the Science Advisory Board agree that the methods and assumptions used by Ecology to define the lower end of the moderate range are scientifically defensible?

Rationale:

- CDC Guidelines/MTCA Method A Soil Cleanup Level
- Use of IEUBK Model
- Reasonable exposure parameters and assumptions

18

Soil Concentrations Below 250 mg/kg

- Question: Does the Science Advisory Board believe there is a sound scientific justification for providing information on ways to reduce lead exposure in situations where soil concentrations are below the MTCA cleanup level (i.e. < 250 mg/kg)?
- Arguments For:
 - Scientific evidence of adverse health effects at PbB < 10 ug/dL
 - Importance of primary prevention
 - Information as a prerequisite to primary prevention
- Arguments Against:
 - Uncertainty on cause-effect relationships
 - CDC decision to maintain current guidelines
 - Costs and loss of focus

Protection of Adults and Older Children

Question: Does the Science Advisory Board agree that it is scientifically defensible to conclude that levels protective of young children also protect older children and adults?

Rationale:

- Relative Sensitivities of Young Children and Adults/Older Children
- Health Endpoints in Adults
- Modeling Results

20

Protection of Ground Water

Question: Does the Science Advisory Board agree that it is scientifically defensible to conclude that surface soil lead concentrations below 1000 mg/kg are unlikely to significantly impact ground water?

Rationale:

- Soil profiles of lead concentrations at different depths in former orchards
- Soil profiles of lead concentrations at different depths in areas surrounding former smelters
- Results of fate and transport modeling and assumptions underlying MTCA Method A Soil Cleanup Levels

Future Information Collection and Evaluation

- Question: Given available information, where does the SAB recommend that Ecology focus future information collection and review?
- Board Suggestions Provided at Previous Meetings:
 - Roadside Lead Concentrations
 - Variations in Blood Lead Concentrations
 - Variations in Soil Lead Concentrations
 - Lead Concentrations in Vegetables
 - Potential pH effects on migration of lead in soils
 - Review of Method A Soil Cleanup Level

22

Next Steps

- Board Conclusions on Lead-Contaminated Soils/Additional Analyses
- Soil-to-Ground Water Issues (Fall 2004)
- Arsenic-Contaminated Soils (Fall 2004)
- Application of MTCA Ecological Evaluation Procedures to Example Sites (Fall 2004)

	C.
ĺ	
1	
	•